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find a linear classification boundary
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not robust wrt input noise!
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w

min
w,b

1

2
w>w︸ ︷︷ ︸

regularizer

s.t. yi (w
>xi + b) ≥ 1

SVM:
maximum margin
classifier
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min
w,b,(yj )

1

2
w>w︸ ︷︷ ︸

regularizer

s.t.
yi (w

>xi + b) ≥ 1
yj(w

>xj + b) ≥ 1

S3VM (TSVM):
semi-supervised
(transductive)
SVM
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min
w,b,(yj ),(ξk )

1
2w

>w
+C

∑
i ξi

+C ∗ ∑
j ξj

s.t.
ξi ≥ 0 ξj ≥ 0

yi (w
>xi + b) ≥ 1− ξi

yj(w
>xj + b) ≥ 1− ξj

soft margin
S3VM
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“Two Moons” toy data

easy for human (0% error)

hard for S3VMs!

S3VM optimization method test error objective value

global min. {Branch & Bound 0.0% 7.81

find
local

minima


CCCP
S3VMlight

∇S3VM
cS3VM

64.0%
66.2%
59.3%
45.7%

39.55
20.94
13.64
13.25

objective function is good for SSL

⇒ try to find better local minima!
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min
w,b,(yj ),(ξk )

1
2w

>w + C
∑

i ξi + C ∗ ∑
j ξj

s.t.
yi (w

>xi + b) ≥ 1− ξi ξi ≥ 0
yj(w

>xj + b) ≥ 1− ξj ξj ≥ 0

Mixed Integer Programming [Bennett, Demiriz; NIPS 1998]

global optimum found by standard optimization packages
(eg CPLEX)

combinatorial & NP-hard !

only works for small sized problems
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min
w,b,(yj ),(ξk )

1
2w

>w + C
∑

i ξi + C ∗ ∑
j ξj

s.t.
yi (w

>xi + b) ≥ 1− ξi ξi ≥ 0
yj(w

>xj + b) ≥ 1− ξj ξj ≥ 0

S3VMlight [T. Joachims; ICML 1999]

train SVM on labeled points, predict yj ’s

in prediction, always make sure that

#{yj = +1}
# unlabeled points

=
#{yi = +1}

# labeled points
(1)

with stepwise increasing C ∗ do
1 train SVM on all points, using labels (yi ), (yj)
2 predict new yj ’s s.t. “balancing constraint” (*)
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min
w,b,(yj ),(ξk )

1
2w

>w + C
∑

i ξi + C ∗ ∑
j ξj

s.t.
yi (w

>xi + b) ≥ 1− ξi ξi ≥ 0
yj(w

>xj + b) ≥ 1− ξj ξj ≥ 0

Balancing constraint required to avoid degenerate solutions!
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min
w,b,(yj ),(ξk )

1
2w

>w + C
∑

i ξi + C ∗ ∑
j ξj

s.t.
yi (w

>xi + b) ≥ 1− ξi ξi ≥ 0
yj(w

>xj + b) ≥ 1− ξj ξj ≥ 0

Effective Loss Functions

ξi = min
{

1− yi (w
>xi + b), 0

}
ξj = min

yj∈{+1,−1}

{
1− yj(w

>xj + b), 0
}

loss
functions

ξi

−1 0 1
0

ξj

−1 0 1
0

yi (w>xi + b) w>xj + b
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min
w,b,(yj ),(ξk )

1
2w

>w + C
∑

i ξi + C ∗ ∑
j ξj

s.t.
yi (w

>xi + b) ≥ 1− ξi ξi ≥ 0
yj(w

>xj + b) ≥ 1− ξj ξj ≥ 0

Resolving the Constraints

1

2
w>w + C

∑
i

`l

(
yi (w

>xi + b)
)

+ C ∗
∑

j

`u

(
w>xj + b

)

loss
functions

`l
−1 0 1

0

`u
−1 0 1

0
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1

2
w>w + C

∑
i

`l

(
yi (w

>xi + b)
)

+ C ∗
∑

j

`u

(
w>xj + b

)

CCCP-S3VM [R. Collobert et al.; ICML 2006]

CCCP: “Concave Convex Procedure”

objective = convex function + concave function

starting from SVM solution, iterate:
1 approximate concave part by linear function at given point
2 solve resulting convex problem

[Fung, Mangasarian; 1999]

similar approach

restricted to linear S3VMs
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1

2
w>w + C

∑
i

`l

(
yi (w

>xi + b)
)

+ C ∗
∑

j

`u

(
w>xj + b

)

S3VM as Unconstrained Differentiable Optimization Problem

original
loss
functions

`l
0 1

0

`u
−1 0 1

0

smooth
loss
functions

`l
0 1

0

`u
−1 0 1

0
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1

2
w>w + C

∑
i

`l

(
yi (w

>xi + b)
)

+ C ∗
∑

j

`u

(
w>xj + b

)

∇S3VM [Chapelle, Zien; AISTATS 2005]

simply do gradient descent!

thereby stepwise increase C ∗

contS3VM [Chapelle et al.; ICML 2006]

... in more detail on next slides!
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1

2
w>w + C

∑
i

`l

(
yi (w

>xi + b)
)

+ C ∗
∑

j

`u

(
w>xj + b

)

Hard Balancing Constraint

S3VMlight

constraint
#{yj = +1}

# unlabeled points
=

#{yi = +1}
# labeled points

equivalent
constraint

1

m

∑
j

sign
(
w>xj + b

)
︸ ︷︷ ︸

average prediction

=
1

n

∑
i

yi︸ ︷︷ ︸
average label
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Making the Balancing Constraint Linear

hard /
non-linear

1

m

∑
j

sign
(
w>xj + b

)
︸ ︷︷ ︸

average prediction

=
1

n

∑
i

yi︸ ︷︷ ︸
average label

soft /
linear

1

m

∑
j

w>xj + b︸ ︷︷ ︸
mean output on unlabeled points

=
1

n

∑
i

yi︸ ︷︷ ︸
average label

Implementing the linear soft balancing:

center the unlabeled data:
∑

j xj = 0

⇒ just fix b; unconstrained optimization over w !
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The Continuation Method in a Nutshell

Procedure
1 smooth function

until convex

2 find minimum

3 track minimum
while decreasing
amount of
smoothing

Illustration
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Smoothing the S3VM Objective f (·)
Convolution of f (·) with Gaussian of width

√
γ/2:

fγ(w) = (πγ)−d/2

∫
f (w − t) exp(−‖t‖2/γ)dt

Closed form solution!

Smoothing Sequence

choose γ0 > γ1 > . . . γp−1 > γp = 0

choose γ0 such that fγ0(·) is convex

choose γp−1 such that fγp−1(·) ≈ fγp(·) = f (·)
p = 10 steps (equidistant on log scale) sufficient
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Handling Non-Linearity

Consider non-linear map Φ(x), kernel k(xi , xj) = Φ(xi )
>Φ(xj).

Representer Theorem: S3VM solution is in span E of data points

E := span{Φ(xi )}
∧
= Rn+m

Implementation

1 expand basis vectors vi of E : vi =
∑
k

AikΦ(xk)

2 orthonormality gives: (A>A)−1 = K
solve for A, eg by KPCA or Choleski

3 project data Φ(xi ) on basis V = (vj)j : x̃i = V>Φ(xi ) = (A)i
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Comparison of S3VM Optimization Methods

averaged over
splits (and pairs
of classes)

fixed
hyperparams
(close to hard
margin)

similar results
for other
hyperparameter
settings

[Chapelle, Chi, Zien; ICML 2006]
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Why would unlabeled data be useful at all?

Uniform data do not help.
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Why would unlabeled data be useful at all?

Uniform data do not help.
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Cluster Assumption

Points in the same cluster are likely to be of the same class.

Algorithmic idea: Low Density Separation
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Manifold Assumption

The data lie on (close to) a low-dimensional manifold.

[images from “The Geometric Basis of Semi-Supervised Learning”, Sindhwani, Belkin, Niyogi

in “Semi-Supervised Learning” Chapelle, Schölkopf, Zien]

Algorithmic idea: use Nearest-Neighbor Graph
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Assumption: Independent Views Exist

There exist subsets of features, called views, each of which

is independent of the others given the class;

is sufficient for classification.

view 1

view 2

Algorithmic idea: Co-Training
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Assumption Approach Example Algorithm

Cluster
Assumption

Low Density
Separation

S3VM; Entropy Regularization;
Data-Dependent Regularization; ...

Manifold
Assumption

Graph-
based
Methods

build weighted graph (wkl)

min
(yj )

∑
k

∑
l

wkl(yk − yl)
2

relax yj to be real ⇒ QP

Independent
Views

Co-Training train two predictors y
(1)
j , y

(2)
j

couple objectives by adding∑
j

(
y

(1)
j − y

(2)
j

)2
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Discriminative Learning (Diagnostic Paradigm)

model p(y |x) (or just boundary:
{
x

∣∣p(y |x) = 1
2

}
)

examples: S3VM, graph-based methods

Generative Learning (Sampling Paradigm)

model p(x|y)

predict via Bayes: p(y |x) =
p(y)p(x|y)∑
y ′ p(y ′)p(x|y ′)

⇒ missing data problem

EM algorithm (expectation-maximization) is a natural tool

successful for text data [Nigam et al.; Machine Learning, 2000]
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SSL Book

MIT Press, Sept. 2006

edited by B. Schölkopf,
O. Chapelle, A. Zien

contains many state-of-art
algorithms by top
researchers

extensive SSL benchmark

online material:

sample chapters
benchmark data
more information

http://www.kyb.tuebingen.mpg.de/ssl-book/

http://www.kyb.tuebingen.mpg.de/ssl-book/
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SSL Book – Text Benchmark

error [%] AUC [%]
l=10 l=100 l=10 l=100

1-NN 38.12 30.11 – –
SVM 45.37 26.45 67.97 84.26

MVU + 1-NN 45.32 32.83 – –
LEM + 1-NN 39.44 30.77 – –
QC + CMN 40.79 25.71 70.71 84.62
Discrete Reg. 40.37 24.00 53.79 71.53
TSVM 31.21 24.52 73.42 80.96
SGT 29.02 23.09 80.09 85.22
Cluster-Kernel 42.72 24.38 73.09 85.90
LDS 27.15 23.15 80.68 84.77
Laplacian RLS 33.68 23.57 76.55 85.05
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Combining S3VM with Graph-based Regularizer

LapSVM [1]: modify
kernel using graph, then
train SVM

combination with S3VM
even better [2]

MNIST, “3” vs “5”

[1] “Beyond the Point Clound”; Sindhwani, Niyogi, Belkin; ICML 2005

[2] “A Continuation Method for S3VM”; Chapelle, Chi, Zien; ICML 2006

Combining S3VM with Co-Training

“SSL for Structured Output Variables”; Brefeld, Scheffer; ICML 2006
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min
w,b,(yj ),(ξk )

1
2w

>w + C
∑

i ξi + C ∗ ∑
j ξj

s.t.
yi (w

>xi + b) ≥ 1− ξi ξi ≥ 0
yj(w

>xj + b) ≥ 1− ξj ξj ≥ 0

How to set C ?

data fitting, yiw
>xi ≥ 1, and regularization, min ||w||2:

|w>xi | = O(1) ⇒ ||w||2 ≈ Var [x]−1

balance influence: ||w||2 ≈ Cξi ⇒ C ≈ Var [x]−1

How to set C ∗ ?

C ∗ = C C ∗ = λ
# unlabeled points
# labeled points C
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Naive Application:

Transductive setting on each user/inbox:

use inbox of given user as unlabeled data
test data = unlabeled data

Guess the model:
Var [x] ≈ 1, so set C = 1
C∗ = C
linear kernel

Results: AUC (rank) [rank in unofficial list]

task A task B
S3VMlight 94.53% (4) [6] 92.34% (2) [4]
∇S3VM 96.72% (1) [3] 93.74% (2) [4]
contS3VM 96.01% (1) [3] 93.56% (2) [4]
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Model selection:

C ∈ {10−2, 10−1, 100, 10+1, 10+2}
C ∗ ∈ {10−2, 10−1, 100, 10+1, 10+2} · C
cross-validation (3-fold for task A; 5-fold for task B)

Results: AUC for contS3VM

task A task B
C = C ∗ = 1 (guessed model) 96.01% 93.56%
model selection 89.31% 90.09%

significant drop in accuracy!

CV relys on iid assumption:
that the data are independent identically distributed
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Take Home Messages

S3VM implements “low density separation” (margin
maximization)

optimization technique matters (non-convex objective)

works well for text classification (texts form clusters)

S3VM-based hybrids may be even better

for spam filtering, further methods needed to cope with
non-iid situation (mail inboxes)!

Thank you!
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