Introduction

Training a S³VM 000000000000000 Overview of SSL

Application to Spam Filtering

Conclusions

Semi-Supervised Support Vector Machines and Application to Spam Filtering

Alexander Zien

Empirical Inference Department, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics

ECML 2006 - Discovery Challenge

Application to Spam Filtering 000

Introduction

- 2 Training a S³VM
 - Why It Matters
 - Some S³VM Training Methods
 - Gradient-based Optimization
 - The Continuation S³VM

Overview of SSL

- Assumptions of SSL
- A Crude Overview of SSL
- Combining Methods
- 4 Application to Spam Filtering
 - Naive Application
 - Proper Model Selection

5 Conclusions

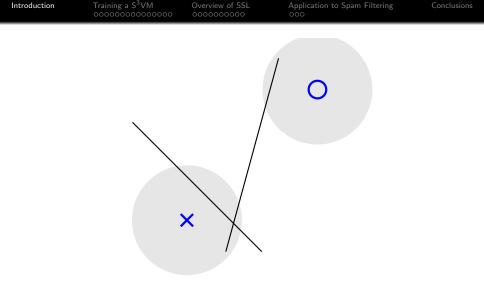
	Introd	uction		
--	--------	--------	--	--

Training a S³VM 000000000000000 Overview of SSL

Application to Spam Filtering

find a linear classification boundary

Introduction	Training a S ³ VM 0000000000000000	Overview of SSL	Application to Spam Filtering	Conclusions
		/		
	<u>\</u>		Ŭ	
	Ň			
	:	\times		
		$/$ \setminus		

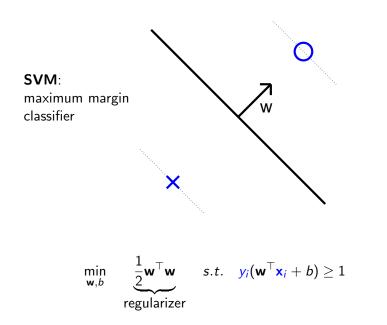


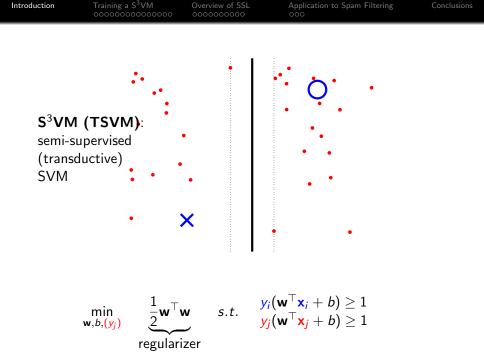
not robust wrt input noise!

aining a S³VM

Overview of SSL

Application to Spam Filtering

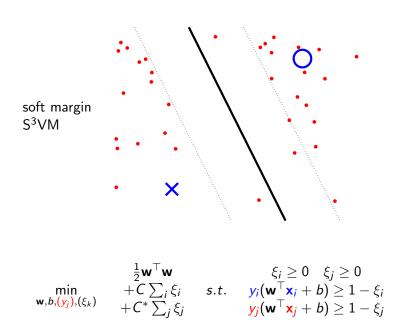




raining a S³VM

Overview of SSL

Application to Spam Filtering



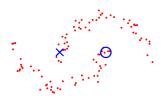
Training a S^3VM O

Overview of SSL

Application to Spam Filtering

"Two Moons" toy data

- easy for human (0% error)
- hard for S³VMs!



	S ³ VM optir	nization method	test error	objective value
-	global min.	{Branch & Bound	0.0%	7.81
-	find	(CCCP	64.0%	39.55
	local <	S ³ VM ^{light}	66.2%	20.94
	minima	$\nabla S^3 V M$	59.3%	13.64
	IIIIIIIId	cS ³ VM	45.7%	13.25

- objective function is good for SSL
- $\bullet \Rightarrow$ try to find better local minima!

$$\min_{\mathbf{w},b,(\mathbf{y}_j),(\xi_k)} \quad \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_i \xi_i + C^* \sum_j \xi_j$$

$$s.t. \quad \mathbf{y}_i (\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i \quad \xi_i \ge 0$$

$$\mathbf{y}_j (\mathbf{w}^\top \mathbf{x}_j + b) \ge 1 - \xi_j \quad \xi_j \ge 0$$

Mixed Integer Programming [Bennett, Demiriz; NIPS 1998]

- global optimum found by standard optimization packages (eg CPLEX)
- combinatorial & NP-hard !
- only works for small sized problems

Training a S³VM Overview of SSL

Application to Spa

$$\min_{\mathbf{w},b,(\mathbf{y}_j),(\xi_k)} \quad \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_i \xi_i + C^* \sum_j \xi_j$$
s.t.
$$\begin{array}{c} y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i \quad \xi_i \ge 0 \\ y_j(\mathbf{w}^\top \mathbf{x}_j + b) \ge 1 - \xi_j \quad \xi_j \ge 0 \end{array}$$

S³VM^{light} [T. Joachims; ICML 1999]

- train SVM on labeled points, predict y_j 's
- in prediction, always make sure that

$$\frac{\#\{y_j = +1\}}{\# \text{ unlabeled points}} = \frac{\#\{y_i = +1\}}{\# \text{ labeled points}}$$
(1)

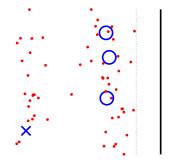
- with stepwise increasing C^* do
 - train SVM on all points, using labels (y_i) , (y_j)
 - predict new y_j's s.t. "balancing constraint" (*)

$$\min_{\mathbf{w},b,(\mathbf{y}_j),(\xi_k)} \qquad \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_i \xi_i + C^* \sum_j \xi_j$$

s.t.
$$y_i (\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i \quad \xi_i \ge 0$$

$$y_j (\mathbf{w}^\top \mathbf{x}_j + b) \ge 1 - \xi_j \quad \xi_j \ge 0$$

Balancing constraint required to avoid degenerate solutions!



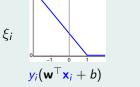
$$\min_{\mathbf{w}, b, (\mathbf{y}_j), (\xi_k) } \frac{\frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_i \xi_i + C^* \sum_j \xi_j }{y_i (\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i \quad \xi_i \ge 0 }$$

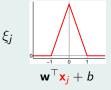
$$s.t. \qquad y_j (\mathbf{w}^\top \mathbf{x}_j + b) \ge 1 - \xi_j \quad \xi_j \ge 0$$

Effective Loss Functions

$$\begin{aligned} \xi_i &= \min\left\{1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b), 0\right\}\\ \xi_j &= \min_{\mathbf{y}_j \in \{+1, -1\}}\left\{1 - y_j(\mathbf{w}^\top \mathbf{x}_j + b), 0\right\}\end{aligned}$$

loss functions

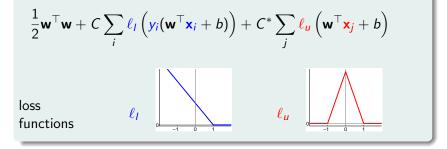




$$\min_{\mathbf{w},b,(\mathbf{y}_j),(\xi_k)} \qquad \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_i \xi_i + C^* \sum_j \xi_j$$

$$s.t. \qquad \frac{y_i (\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i \quad \xi_i \ge 0}{y_j (\mathbf{w}^\top \mathbf{x}_j + b) \ge 1 - \xi_j \quad \xi_j \ge 0}$$

Resolving the Constraints



$$\frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_{i}\ell_{I}\left(y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i}+b)\right) + C^{*}\sum_{j}\ell_{u}\left(\mathbf{w}^{\top}\mathbf{x}_{j}+b\right)$$

CCCP-S³VM [R. Collobert et al.; ICML 2006]

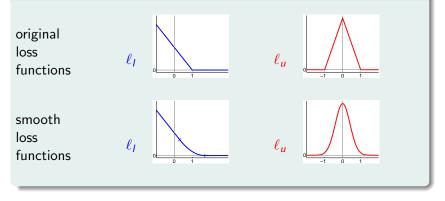
- CCCP: "Concave Convex Procedure"
- objective = convex function + concave function
- starting from SVM solution, iterate:
 - approximate concave part by linear function at given point
 - e solve resulting convex problem

[Fung, Mangasarian; 1999]

- similar approach
- restricted to linear S³VMs

$$\frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_{i}\ell_{i}\left(\mathbf{y}_{i}(\mathbf{w}^{\top}\mathbf{x}_{i}+b)\right) + C^{*}\sum_{j}\ell_{u}\left(\mathbf{w}^{\top}\mathbf{x}_{j}+b\right)$$

S³VM as Unconstrained Differentiable Optimization Problem



$$\frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_{i}\ell_{i}\left(\mathbf{y}_{i}(\mathbf{w}^{\top}\mathbf{x}_{i}+b)\right) + C^{*}\sum_{j}\ell_{u}\left(\mathbf{w}^{\top}\mathbf{x}_{j}+b\right)$$

$\nabla S^3 VM$ [Chapelle, Zien; AISTATS 2005]

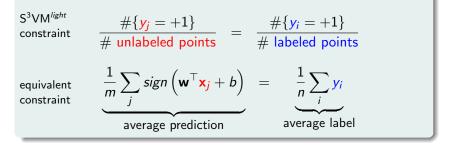
- simply do gradient descent!
- thereby stepwise increase C^*

contS³VM [Chapelle et al.; ICML 2006]

... in more detail on next slides!

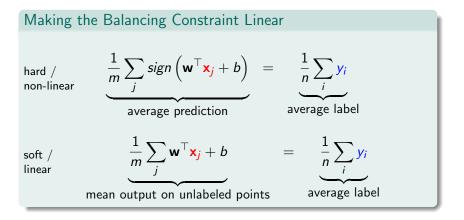
$$\frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_{i}\ell_{I}\left(\mathbf{y}_{i}(\mathbf{w}^{\top}\mathbf{x}_{i}+b)\right) + C^{*}\sum_{j}\ell_{u}\left(\mathbf{w}^{\top}\mathbf{x}_{j}+b\right)$$

Hard Balancing Constraint



Training a S³VM

Overview of SSL 0000000000 Application to Spam Filtering

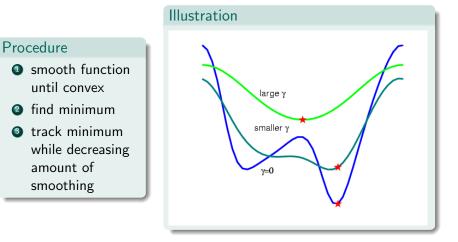


Implementing the linear soft balancing:

- center the unlabeled data: $\sum_{j} \mathbf{x}_{j} = \mathbf{0}$
- \Rightarrow just fix *b*; unconstrained optimization over **w** !

Application to Spam Filtering

The Continuation Method in a Nutshell



Application to Spam Filtering

Smoothing the S³VM Objective $f(\cdot)$

Convolution of $f(\cdot)$ with Gaussian of width $\sqrt{\gamma/2}$:

$$f_{\gamma}(\mathbf{w}) = (\pi \gamma)^{-d/2} \int f(\mathbf{w} - \mathbf{t}) \exp(-\|\mathbf{t}\|^2 / \gamma) d\mathbf{t}$$

Closed form solution!

Smoothing Sequence

choose
$$\gamma_0 > \gamma_1 > \ldots \gamma_{p-1} > \gamma_p = 0$$

- choose γ_0 such that $f_{\gamma_0}(\cdot)$ is convex
- choose γ_{p-1} such that $f_{\gamma_{p-1}}(\cdot) \approx f_{\gamma_p}(\cdot) = f(\cdot)$
- p = 10 steps (equidistant on log scale) sufficient

Training a S³VM Over

Overview of SSL

Application to Spam Filtering 000

Handling Non-Linearity

Consider non-linear map $\Phi(\mathbf{x})$, kernel $k(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i)^\top \Phi(\mathbf{x}_j)$.

Representer Theorem: S^3VM solution is in span E of data points

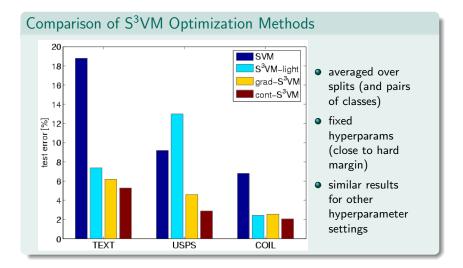
$$\mathsf{E} := span\{\Phi(\mathbf{x}_i)\} \stackrel{\wedge}{=} \mathbb{R}^{n+m}$$

Implementation• expand basis vectors \mathbf{v}_i of E: $\mathbf{v}_i = \sum_k A_{ik} \Phi(\mathbf{x}_k)$ • orthonormality gives:
solve for A, eg by KPCA or Choleski $(A^{\top}A)^{-1} = K$ • project data $\Phi(\mathbf{x}_i)$ on basis $V = (\mathbf{v}_j)_j$: $\tilde{\mathbf{x}}_i = V^{\top} \Phi(\mathbf{x}_i) = (A)_i$

Introduction

Training a S³VM ○○○○○○○○○○○○○○ Overview of SSL

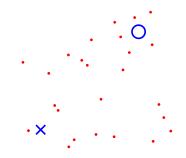
Application to Spam Filtering



[Chapelle, Chi, Zien; ICML 2006]

Application to Spam Filtering

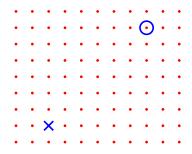
Why would unlabeled data be useful at all?



Uniform data do not help.

Application to Spam Filtering

Why would unlabeled data be useful at all?

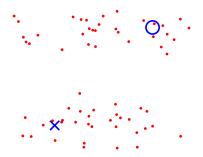


Uniform data do not help.

Application to Spam Filtering

Cluster Assumption

Points in the same cluster are likely to be of the same class.



Algorithmic idea: Low Density Separation

Application to Spam Filtering

Manifold Assumption

The data lie on (close to) a low-dimensional manifold.

[images from "The Geometric Basis of Semi-Supervised Learning", Sindhwani, Belkin, Niyogi in "Semi-Supervised Learning" Chapelle, Schölkopf, Zien]

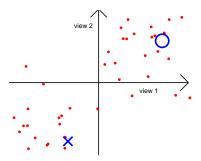
Algorithmic idea: use Nearest-Neighbor Graph

Application to Spam Filtering

Assumption: Independent Views Exist

There exist subsets of features, called views, each of which

- is independent of the others given the class;
- is sufficient for classification.



Algorithmic idea: Co-Training

Application to Spam Filtering 000

Assumption	Approach	Example Algorithm
Cluster Assumption	Low Density Separation	S ³ VM; Entropy Regularization; Data-Dependent Regularization;
Manifold Assumption	Graph- based Methods	• build weighted graph (w_{kl}) • $\min_{(y_j)} \sum_k \sum_l w_{kl} (y_k - y_l)^2$ • relax y_j to be real \Rightarrow QP
Independent Views	Co-Training	• train two predictors $y_j^{(1)}$, $y_j^{(2)}$ • couple objectives by adding $\sum_j (y_j^{(1)} - y_j^{(2)})^2$

Discriminative Learning (Diagnostic Paradigm)

- model $p(y|\mathbf{x})$ (or just boundary: $\{\mathbf{x} \mid p(y|\mathbf{x}) = \frac{1}{2}\}$)
- examples: S³VM, graph-based methods

Generative Learning (Sampling Paradigm)

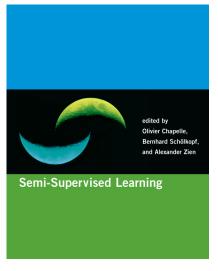
• model $p(\mathbf{x}|y)$

• predict via Bayes:
$$p(y|\mathbf{x}) = \frac{p(y)p(\mathbf{x}|y)}{\sum_{y'} p(y')p(\mathbf{x}|y')}$$

- ullet \Rightarrow missing data problem
- EM algorithm (expectation-maximization) is a natural tool
- successful for text data [Nigam et al.; Machine Learning, 2000]

Training a S³VM 000000000000000 Overview of SSL

Application to Spam Filtering



SSL Book

- MIT Press, Sept. 2006
- edited by B. Schölkopf,
 O. Chapelle, A. Zien
- contains many state-of-art algorithms by top researchers
- extensive SSL benchmark
- online material:
 - sample chapters
 - benchmark data
 - more information

http://www.kyb.tuebingen.mpg.de/ssl-book/

Overview of SSL 00000000000

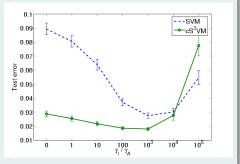
SSL Book – Text Benchmark

	error [%]		AUC [%]	
	l=10	l=100	l=10	l=100
1-NN	38.12	30.11	-	_
SVM	45.37	26.45	67.97	84.26
MVU + 1-NN	45.32	32.83	_	_
LEM + 1-NN	39.44	30.77	_	-
QC + CMN	40.79	25.71	70.71	84.62
Discrete Reg.	40.37	24.00	53.79	71.53
TSVM	31.21	24.52	73.42	80.96
SGT	29.02	23.09	80.09	85.22
Cluster-Kernel	42.72	24.38	73.09	85.90
LDS	27.15	23.15	80.68	84.77
Laplacian RLS	33.68	23.57	76.55	85.05

Application to Spam Filtering 000

Combining S³VM with Graph-based Regularizer

- LapSVM [1]: modify kernel using graph, then train SVM
- combination with S³VM even better [2]
- MNIST, "3" vs "5"



"Beyond the Point Clound"; Sindhwani, Niyogi, Belkin; ICML 2005
 "A Continuation Method for S³VM"; Chapelle, Chi, Zien; ICML 2006

Combining S³VM with Co-Training

"SSL for Structured Output Variables"; Brefeld, Scheffer; ICML 2006

$$\min_{\mathbf{w}, b, (\mathbf{y}_j), (\xi_k) } \frac{\frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_i \xi_i + C^* \sum_j \xi_j }{y_i (\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i \quad \xi_i \ge 0 }$$

$$s.t. \qquad y_j (\mathbf{w}^\top \mathbf{x}_j + b) \ge 1 - \xi_j \quad \xi_j \ge 0$$

How to set *C* ?

• data fitting, $y_i \mathbf{w}^\top \mathbf{x}_i \ge 1$, and regularization, min $||\mathbf{w}||^2$:

$$|\mathbf{w}^{ op}\mathbf{x}_i| = \mathcal{O}(1) \quad \Rightarrow \quad ||\mathbf{w}||^2 pprox Var[\mathbf{x}]^{-1}$$

• balance influence: $||\mathbf{w}||^2 \approx C\xi_i \Rightarrow C \approx Var[\mathbf{x}]^{-1}$

How to set C^* ?

• $C^* = C$

•
$$C^* = \lambda \frac{\# \text{ unlabeled points}}{\# \text{ labeled points}} C$$

Naive Application:

- Transductive setting on each user/inbox:
 - use inbox of given user as unlabeled data
 - test data = unlabeled data

• Guess the model:

- $Var[\mathbf{x}] \approx 1$, so set C = 1
- *C** = *C*
- linear kernel

Results: AUC (rank) [rank in unofficial list]

	task A	task B
S ³ VM ^{light}	94.53% (4) [6]	92.34% (2) [4]
$\nabla S^{3}VM$	96.72% (1) [3]	93.74% (2) [4]
contS ³ VM	96.01% (1) [3]	93.56% (2) [4]

Application to Spam Filtering ○○●

Model selection:

- $C \in \{10^{-2}, 10^{-1}, 10^{0}, 10^{+1}, 10^{+2}\}$
- $C^* \in \{10^{-2}, 10^{-1}, 10^0, 10^{+1}, 10^{+2}\} \cdot C$
- cross-validation (3-fold for task A; 5-fold for task B)

Results: AUC for contS ³ VM		
	task A	task B
$C = C^* = 1$ (guessed model)	96.01%	93.56%
model selection	89.31%	90.09%

• significant drop in accuracy!

• CV relys on **iid assumption**: that the data are independent identically distributed

Take Home Messages

- S³VM implements "low density separation" (margin maximization)
- optimization technique matters (non-convex objective)
- works well for text classification (texts form clusters)
- S³VM-based hybrids may be even better
- for **spam filtering**, further methods needed to cope with **non-iid** situation (mail inboxes)!

Thank you!